
SPRING 2024: MATH 791 EXAM 3 SOLUTIONS

You will work in teams on this exam. You may use your notes, the Daily Summary, and any homework
you have done (providing full details), but you may not consult any other sources, including, any algebra
textbook, the internet, any graduate students not on your team, or any professor except your Math 791
instructor. You may not cite without proof any facts not covered in class or the homework. All members
of each team should contribute to the team’s effort. The solutions should be typeset in LaTex. Each team
member should also participate in the typesetting effort. Each team should upload a pdf file of its solution
to Canvas no later than 5pm, Friday May 10. Note: Please do not upload solutions in any other format.

Each problem is worth 10 points. To receive full credit, all proofs must be complete and contain the
appropriate amount of detail. Good luck on the exam!

1. Show that the identity map is the only automorphism of R.1 Hint: Use the automorphism properties to
prove that an automorphism of R must be a continuous function from R to R.
Solution. Let σ : R → R be an automorphism. There are many ways to solve this problem. We begin by
noting that if a ∈ R ≥ 0, then σ(a) = σ(

√
a ·

√
a) = σ(

√
a)2 ≥ 0. Thus, if a ≥ b, then a − b ≥ 0, so that

0 ≤ σ(a− b) = σ(a)− σ(b), and thus σ(a) ≥ σ(b). In other words, σ preserves order. Now suppose {xn} is
a sequence converging to 0. Then {x2n} also converges to 0. For each n there exists a rational number such
that 0 ≤ x2n ≤ rn, with {rn} converging to 0. Thus, 0 ≤ σ(x2n) = σ(xn)

2 ≤ σ(rn) = rn, from which it follows
that {σ(xn)2} and hence {σ(xn)} converges to 0. Therefore σ is continuous at 0. Now let a ∈ R be any real
number and suppose {xn} converges to a. Then {xn−a} converges to 0, and hence {σ(xn−a)} converges to
0, from which it follows {σ(xn)} converges to σ(a). Therefore σ is continuous at a, and hence a continuous
function. Since σ fixes every rational number and every real number is a limit of rational numbers, it follows
that σ fixes every real number, i.e., σ is the identity. □

2. Let F be a field of characteristic zero, a ∈ F and n ≥ 1. Suppose F contains a primitive nth root of
unity, ϵ, and set f(x) = xn − a. Let α ∈ F be a root of f(x). Show that F (α) is Galois over F and that
Gal(F (α)/F ) is abelian.

Solution. The roots of f(x) are α, αϵ, . . . , αϵn−1, which are distinct. Thus F (α) is the splitting field of f(x)
over F , and is therefore Galois over F , by the lecture of April 19. Let σ, τ ∈ Gal(F (α)/F ). Then σ(α) = αϵi

and τ(α) = αϵj , for some 1 ≤ i, j ≤ n− 1. Thus,

στ(α) = σ(αϵj) = ϵjσ(α) = ϵjϵiα = ϵiϵjα = ϵiτ(α) = τ(αϵi) = τσ(α).

Since σ, τ are determined by their effect on α, we have στ = τσ, as elements of Gal(F (α)/F ). Since σ, τ are
arbitrary, this gives what we want. □

3. The famous Kronecker-Weber Theorem states that an abelian extension of Q is contained in a cyclotomic
extension of Q. In other words, if Q ⊆ K is a finite, Galois extension and Gal(K/Q) is abelian, then there
exists n ≥ 1 and a primitive nth root of unity ϵ such that K ⊆ Q(ϵ). For arbitrary extensions, this theorem

fails. Let 3
√
2 denote the real cube root of 2. Prove that Q( 3

√
2) is not contained in Q(ϵ), for any nth root of

unity ϵ.

Solution. Suppose by way of contradiction that Q( 3
√
2) ⊆ Q(ϵ), where ϵ is an nth root of unity. By enlarging

the extension, we may, without loss of generality, assume that ϵ is a primitive nth root of unity. Thus, the
extension is a Galois extension (its the splitting field of xn−1 over Q) with abelian Galois group (by Problem
10). Since x3 − 2 has a root in Q(ϵ), it has all of its roots in Q(ϵ), by the property of splitting field shown in
the lecture of April 17. If we write K for the splitting field of x3 − 2 over Q, then we have Q ⊆ K ⊆ Q(ϵ).
Since K is Galois over Q, by the Galois Correspondence Theorem Gal(K/F ) is a homomorphic image of
Gal(Q(ϵ)/Q). However the latter is abelian, while the former is isomorphic to S3, which gives the required
contradiction. □

1By contrast, there are uncountably many automorphisms of C!
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4. For f(x) = x3 + x+ 1 and g(x) = x4 + 3x2 + x+ 7 in Q[x]:

(i) Find rational polynomials a(x), b(x) ∈ Q[x] such that 1 = a(x)f(x) + b(x)g(x).
(ii) Prove that g(x) is irreducible over Q. Then, let α ∈ C be a root of g(x) and find f(α)−1 as an

element of Q(α), written in terms of the basis 1, α, α2, α3.
(iii) Similarly, for h(x) = x3 + 4x2 + x, find f(α)h(α) as an element of Q(α), written in terms of the

basis.

Solution. For (i), the first step is to use the Euclidean algorithm to find, the GCD, i.e., the last non-zero
remainder upon repeated applications of the division algorithm. This leads to:

g(x) = xf(x) + (2x2 + 7)

f(x) =
x

2
(2x2 + 7) + (−5

2
x+ 1)

2x2 + 7 = −(
4

5
x+

8

25
)(−5

2
x+ 1) +

183

25
.

Recalling that GCDS are unique up to units, we see that 1 is the GCD of f(x) and g(x). We use backwards
substitution with the equations above to solve for 183

25 in terms of f(x) and g(x).

183

25
= 1 · (2x2 + 7) + (

4

5
x+

8

25
)(−5

2
x+ 1)

183

25
= 1 · (2x2 + 7) + (

4

5
x+

8

25
)(f(x)− x

2
(2x2 + 7))

183

25
= (

4

5
x+

8

25
)f(x) + (1− 2

5
x2 − 4

25
x)(2x2 + 7)

183

25
= (

4

5
x+

8

25
)f(x) + (1− 2

5
x2 − 4

25
x)(g(x)− xf(x))

183

25
= (

8

25
− 1

5
x+

4

25
x2 +

2

5
x3)f(x) + (1− 2

5
x2 − 4

25
x)g(x).

Multiplying the last equation by 25
183 , we obtain

a(x) =
8

183
− 5

183
x+

4

183
x2 +

10

183
x3 and b(x) =

25

183
− 10

183
x2 − 4

183
x.

For (ii), note that g(x) is a primitive polynomial, thus, by Gauss’s Lemma, to see that g(x) is irreducible
over Q, it suffices to see that g(x) is irreducible over Z. By the Rational Root Test, g(x) does not have a root
in Q, so g(x) does not factor as a product of a linear polynomial and a cubic polynomial with coefficients in
Z. Suppose g(x) = (x2 + a1x + a0)(x

2 + b1x + b0), with each ai, bi ∈ Z. This single equation in Z[x] gives
rise to the system of equations over Z

a1 + b1 = 0

a1b1 + a0 + b0 = 3

a0b1 + a1b0 = 1

a0b0 = 7.

I will leave it to you to verify that this system of equations has no solutions over Z, which implies that g(x)
is irreducible over Z.
To find f(α)−1, upon substituting α in the the last displayed equation above in problem 3 involving 183

25 , we
see that

f(α)−1 = a(α) =
8

183
− 5

183
α+

4

183
α2 +

10

183
α3.

For (iii), one calculates f(x)h(x) = (x2+4x− 1)g(x)+ (−8x3− 3x2− 26x+7), so writing f(α)g(α) in terms
of the basis for Q(α) over Q we get f(α)h(α) = −8α3 − 3α2 − 26α+ 7.

5. Let F ⊆ K be an extension of fields with [K : F ] < ∞. Prove that |Gal(K/F )| ≤ [K : F ]. Hint: Write
K = F (α1, . . . , αn) and use induction together with the Crucial Proposition from April 12. Start by getting a
good understanding of the case n = 2. For this, find the number of field homomorphisms F (α1) → F (α1, α2)
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fixing F . (Note any homomorphism between fields is one-to-one, and thus an isomorphism on to its image.)
Now work out how to use the Crucial Proposition to count the number of automorphisms of F (α1, α2) that
fix F . Once you have done this, you should be able to do the general case.

Solution. Since K is finite over F , we can assume K = F (α1, . . . , αn). We may further assume that no
αi+1 belongs to F (α1, . . . , αi). We induct on i to show that the number of field homomorphisms from
F (α1, . . . , αi) to K fixing F is less than or equal to [F (α1, . . . , αi) : F ]. The case i = 1 is clear, for if f(x)
denotes the minimal polynomial of α1 over F , and ϕ : F (α1) → K is a homomorphism fixing F , then ϕ(α1)
must be a root of f(x). Since there are at most deg(f(x)) = [F (α1) : F ] roots of f(x) in K, this gives what
we want.

Now suppose i > 1 and there are s field homomorphisms from E := F (α1, . . . , αi) to K fixing F with
s ≤ [F (α1, . . . , αi) : F ]. Let g(x) denote the minimal polynomial of αi+1 over E. Let ϕ : E → K be a
field homomorphism fixing F . Set E′ := ϕ(E), so that ϕ is field isomorphism from E to E′. As in the
Crucial Proposition, we let gϕ(x) denote the polynomial in E′[x] obtained by applying ϕ to the coefficients
of g(x). Suppose d := deg(g(x)) and σ : E(αi+1) → K is a field homomorphism extending ϕ. Then σ(αi+1)
must be a root of gϕ(x) in K. Since there are at most d such roots, the number of field homomorphisms
σ : E(αi+1) → K extending ϕ is less than or equal to d = [E(αi+1) : E]. Now, suppose τ : E(αi+1) → K is
a field homomorphism fixing F . Then τ|E : E → K is a field homomorphism from E to K fixing F . In other
words, any field homomorphism from E(αi+1) → K fixing F is the extension of a field homomorphism from
E to K fixing F . Now, there are s field homomorphisms ϕ : E → K and at most d extensions of each ϕ to
E(αi+1), therefore there are at most

sd ≤ [E : F ] · [E(αi+1) : E] = [F (α1, . . . , αi+1) : F ],

homomorphisms from F (α1, . . . , αi+1) to K fixing F . Thus, by induction on i, when i = n, we have that
the number of field homomorphisms from K → K fixing F is less than or equal to [K : F ], which completes
the proof. □

6. Let γ ∈ C be a primitive 8th root of unity (e.g., e
2πi
8 ) and set K := Q(γ).

(i) Find (with proof) the minimal polynomial of γ.
(ii) Find Gal(K/Q).
(iii) Write out a group table in terms of automorphisms for the Galois group you found in (ii).
(iv) For α := γ + γ2, find the minimal polynomial p(x) for α over Q and all of the roots of p(x).

Solution. Since γ satisfies x8 − 1 = (x4 − 1)(x4 + 1), and does not satisfy x4 − 1, γ satisfies x4 + 1. To
see that x4 + 1 is irreducible over Q, since it is a primitive polynomial, it suffices to show that x4 + 1 is
irreducible over Z. x4 + 1 clearly has no roots in Z, so one has to show that there is not an equation of the
form x4 + 1 = (x2 + ax + b)(x2 + cx + d), with a, b, c, d ∈ Z. This polynomial equation yields a system of
four equations in the unknowns a, b, c, d:

a+ c = 0

ac+ b+ d = 0

ad+ bc = 0

bd = 1

The last equation implies b = d = 1 or b = d = −1. Suppose b = d = 1. Then the first two equations give
a + c = 0 and ac = −2. Since a = −c, the second equation becomes c2 = 2, which has no solution over Z.
Similarly, if b = d = −1, the system has not solution, so that x4 + 1 is irreducible over Q. Thus, x4 + 1 is
the minimal polynomial of γ over Q. It follows that [Q(γ) : Q] = 4 and 1, γ, γ2, γ3 is a basis for Q(γ) over
Q. This gives part(i).

For part (ii), γ, γ3, γ5, γ7 are the four primitive 8th roots of unity. Since they satisfy x8−1 and do not satisfy
x4 − 1, they must be the roots of x4 + 1. Thus, by the Crucial Proposition, it follows that the non-trivial
automorphisms of Gal(K/Q) take γ to the elements γ3, γ5, γ7, respectively. If we call these automorphisms,
σ, τ, δ, we have Gal(K/Q) = {id, σ, τ, δ}. σ2(γ) = σ(γ3) = γ9 = γ, so σ2 = id. Similarly, τ2 = id = δ2, so
that Gal(K/Q) ∼= Z2 × Z2.
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For part (iii), στ(γ) = σ(γ5) = γ51 = γ7 = δ(γ), so στ = γ. Similarly, τδ = σ and σδ = τ , and this together
with the fact that Gal(K/Q) is abelian yields the following group table

· id σ τ δ

id id σ τ δ

σ σ id δ τ

τ τ δ id σ

δ δ τ σ id

For part (iv), multiplying each basis element by α yields the following system of equations

α · 1 = 0 · 1 + 1 · γ + 1 · γ2 + 0 · γ3

α · γ = 0 · 1 + 0 · γ + 1 · γ2 + 1 · γ3

α · γ2 = −1 · 1 + 0 · γ + 0 · γ2 + 1 · γ3

α · γ3 = −1 · 1 +−1 · γ + 0 · γ2 + 0 · γ3.
We may rewrite this system of equation as a matrix equation

α −1 −1 0
0 α −1 −1
1 0 α −1
1 1 0 α

 ·


1
γ
γ2

γ3

 =


0
0
0
0

 .

Since the corresponding system of equations has a non-trivial solution, the determinant of the coefficient
matrix equals zero. This shows that α is a root of the polynomial p(x) = x4 +2x2 +4x+2. By Eisenstein’s
criterion, p(x) is irreducible over Q, so that p(x) is the minimal polynomial for α over Q.

There are several ways to find the other roots of p(x). Here is one way. If we apply the automorphisms in
Gal(K/Q) to α, we will obtain the other roots of p(x).

(i) σ(α) = σ(γ) + σ(γ)2 = γ3 + γ6.
(ii) τ(α) = τ(γ) + τ(γ)2 = γ5 + γ10 = γ2 + γ5.
(iii) δ(α) = δ(γ) + δ(γ)2 = γ7 + γ14 = γ6 + γ7.

Thus, the roots of p(x) are γ, γ3 + γ6, γ2 + γ5, γ6 + γ7.

7. Construct a field K with 125 elements and exhibit explicitly the automorphism group of K.

Solution. Here are two solutions to this problem. The first solution answers this question directly, while the
second solution can easily be generalized to show that for any prime p and n ≥ 1, there exists a field with
pn elements whose automorphism group is isomorphic to Zn.

For the first solution, consider p(x) = x3+x+1 ∈ Z5[x]. It is easy to see that p(x) does not have a root in the
field Z5, so that p(x) is irreducible over Z5. Let α be a root of p(x) and set K := Z5(α). Since [K : Z5] = 3,
K has 125 elements. Now consider the Frobenius map σ : K → K given by σ(a) = ap, for all a ∈ K. This
is a 1-1 field homomorphism, and since K is finite, it must be onto, and hence σ is an automorphism of K.
Any such automorphism fixes Z5, so σ ∈ Gal(K/Z5). Now, σ2(α) = α25. If σ2 = id, then α25 = α in K.
Thus, in the multiplicative group K∗, α24 = 1. But |K∗| = 124, and 24 does not divides 124, so we cannot
have α25 = α, i.e., σ2 ̸= id. On the other hand, σ3(α) = α125. In K∗, α124 = 1, so α125 = α, which shows
that σ3 = id. Thus,

3 = |{id, σ, σ2}| ≤ |Gal(K/Z5)| ≤ [K : Z5] = 3,

showing that ⟨σ⟩ = Gal(K/Z5) ∼= Z3.

For the second solution, consider the splitting field K of f(x) = x5
3 − x over Z5

2. Since f ′(x) = −1 ̸≡ 0
modulo 5, the GCD f(x) and f ′(x) equals 1, so by the lecture of April 3, f(x) has 125 distinct roots in K.

2In the general case, one takes K to be the splitting field of xpn − x over Zp. As in this special case, the Frobenius
automorphism generates the automorphism group of K, which will be isomorphic to Zn. The proof is exactly the same as the

present case.
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Let a, b ∈ K be roots of f(x). Then f(a+ b) = (a+ b)125 − (a+ b) = a125 − b125 − a− b = a+ b− a− b = 0
in K. Similarly, f(ab) = (ab)125 − ab = a125b125 − ab = ab− ab = 0. Suppose a ̸= 0. Then,

0 = f(1) = f(aa−1) = (aa−1)125 − aa−1 = a125(a−1)125 − aa−1 = a(a−1)125 − aa−1 = a · {(a−1)125 − a−1}.

Since a ̸= 0, (a−1)125−a−1 = 0, and we have that a+b, ab, a−1 are roots of f(x). Note also that the elements
of Z5 are roots of f(x). Thus, the 125 roots of f(x) form a subfield of K containing Z5, and must equal K,
since K is obtained by adjoining the roots of f(x) to Z5. In other words, the splitting field of x125 − x over
Z5 is a field with 125 elements.

Now, since |K| = 125, [K : Z5] = 3. Consider σ : K → K given by σ(a) = a5, for all a ∈ K. Since
(a+ b)5 = a5 + b5 and (ab)5 = ab in K, σ is a field homomorphism, and is clearly 1-1. Since K is finite, σ is
an automorphism. Now, by the Primitive element Theorem, K = Z5(c), for some c ∈ K. Suppose σ2 = id.
Then c = σ2(c) = (c5)5 = c25. Similarly (c2)25 = c2. Since every element t of Z5 satisfies t5 = t, it follows
that every element a ∈ K satisfies a25 = a, since a = u+ vc+ wc2, for some u, v, w ∈ Z5. But then x

25 − x

has 125 roots, which is a contradiction. Thus, σ2 ̸= id. Now, suppose a ∈ K, Then σ3(a) = a5
3

= a125 = a.
Thus, σ3 = id. Thus, id, σ, σ2 are three distinct automorphisms of K and belong to Gal(K/Z5). Since the
order of the Galois group is less than or equal to the degree of the extension, we have |Gal(K/Z5)| = 3.
Since any automorphism of K fixes Z5, ⟨σ⟩ ∼= Z3 is the automorphism group of K. □

8. Let p be a prime. Prove that for all n ≥ 1, there exists an irreducible polynomial of degree n in Zp[x].

Solution. The same argument (though more general) given in the previous problem, shows that if K is the
splitting field of f(x) = xp

n − x over Zp, then K is a field with pn elements. Thus, [K : Zp] = n. Let a ∈ K
be a primitive element for K over Zp. Then the minimal polynomial for a over Zp is irreducible and has
degree n. □
9. Let α :=

√
2 +

√
2. Show that Q(α) is a Galois extension of Q and Gal(Q(α)/Q) ∼= Z4. Find all

intermediate fields between Q and Q(α).

Solution. Set β :=
√
2−

√
2. Then it is easy to check that p(x) = x4 − 4x2 + 2 is the minimal polynomial

for α over Q and that the roots of p(x) are ±α and ±β. Moreover,
√
2

α = β showing that ±β ∈ Q(α). Thus,
Q(α) is the splitting field of p(x) over Q, and is therefore Galois over Q.

Define σ : Q(α) → Q(α) by σ(α) = β, which we can do by the Crucial Proposition of April 12. Since α2−1 =√
2, σ(

√
2) = β2 − 2 = −

√
2. Thus, σ(β) = σ(

√
2)

σ(α) = −
√
2

β = −α, and therefore σ2(α) = −α. Similarly, we

have σ3(α) = −β, and σ4(α) = α, showing that Gal(Q(α)/Q) ∼= Z4, since we have |Gal(Q(α)/Q)| = 4.

Finally, since ⟨σ2⟩ is the only proper subgroup of Gal(Q(α)/Q), Q(α)σ
2

is the only intermediate field. Since

σ(
√
2) = −

√
2, σ2(

√
2) =

√
2. It follows that Q(

√
2) is the only intermediate field. □

10. For n ≥ 1, consider the complex number ϵ := e
2πi
n , a primitive nth root of unity.

(i) Show that Q(ϵ) is a splitting field for xn − 1 over Q.
(ii) By definition, γ ∈ C is a primitive nth root of unity if and only if γn = 1 and γr ̸= 1 for r < n.

Prove that: ϵi is a primitive nth root of unity if and only if i and n are relatively prime if and only
if ⟨ϵi⟩ = ⟨ϵ⟩ and that this accounts for all primitive nth roots of unity. Conclude that there are ϕ(n)
primitive nth roots of unity.

(iii) Let {ϵ, ϵi2 , . . . , ϵiϕ(n)} be the primitive nth roots of unity and set Φn(x) := (x−ϵ)(x−ϵi1) · · · (x−ϵiϕ(n),
the nth cyclotomic polynomial. Prove that xn − 1 =

∏
d|n Φd(x).

(iv) Use induction on n to show that Φn(x) ∈ Z[x].
(v) Calculate Φ12(x).
(vi) A standard fact is Φn(x) is irreducible over Z, equivalently, over Q. Use this fact to prove that

Gal(Q(ϵ)/Q) ∼= (Zn)
∗, the multiplicative group of units in the ring Zn.

Solution. For (i), 1, ϵ, . . . , ϵn−1 are n distinct complex numbers and they all are roots of unity, i.e., roots of
xn − 1. If we adjoin these to Q, we simply get Q(ϵ), so that Q(ϵ) is the splitting field of xn − 1 over Q.
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For (ii), note that C := {1, ϵ, . . . , ϵn−1} is a cyclic group of order n generated by ϵ, thus, o(ϵi) = n if and
only if ⟨ϵi⟩ = C if and only if i is less than n and relatively prime to n. This accounts for all primitive nth
roots of unity, since such a complex number is a root of xn − 1, and hence ϵj , for some 0 ≤ j ≤ n− 1.

For (iii), we note that if C is a cyclic group of order n, then n = Σd|nϕ(d), since every element in C has order
d for d | n, and there are ϕ(d) elements of order d - since a cyclic group of order n has a unique subgroup of
order d for each d | n. Thus, taking C as above, we can write C as a disjoint union of sets Cd, with d | n,
where Cd are the elements of C having order d. But then, Cd is just the set of primitive dth roots of unity.
It follows that Φd(x) =

∏
α∈Cd

(X − α)and hence xn − 1 =
∏

d|n Φd(x).

For (iv), we clearly have Φ1(x) = (x − 1) and Φ2(x) = x + 1 are in Z[x]. For n ≥ 2, we have, by induction
on n, Φd(x) ∈ Z[x], for d | n and d < n. Thus, we have xn − 1 = f(x)Φn(x), with xn − 1 and f(x) in
Z[x]. For ease of notation, set t := ϕ(n), the degree of Φn(x), and set Φn(x) = xt + ct−1x

t−1 + · · · c1x+ c0.
Write f(x) = xn−1 + fn−t−1x

n−t−1 + · · · + f1x + f0. We show (reverse) inductively the each cj ∈ Z, by
comparing the coefficients in both sides of the equation xn − 1 = Φn(x)f(x). In degree n − 1, we have
0xn−1 = (ct−1 · 1 + fn−t−1 · 1)xn−1. Since fn−t−1 ∈ Z, ct−1 ∈ Z. In degree n− 2, we have
0xn−2 = (ct−2 · 1 + ct−1fn−1 + fn−2 · 1)xn−2. Since ct−1fn−1 + fn−2 ∈ Z, we have ct−2 ∈ Z. Continuing in
this way, we have that each cj ∈ Z, so Φn(x) ∈ Z[x].

Alternately when we use the high school algorithm to divide f(x) into xn− 1, each step requires multiplying
the leading term of f(x), which is xn−1, with a previously determined integer times an appropriate power
of x. This integer then becomes a coefficient in the quotient, i.e., Φn(x). In other words, since the leading
coefficient of f(x) is 1 and the coefficients of xn − 1 are in Z, all of the arithmetic in the calculation takes
place in Z, so Φn(x) has coefficients in Z.

For (v), we calculate each Φd(x), for d < 12 and d | 12. It’s easy to see that Φ1(x) = x − 1,Φ2(x) =
x+ 1,Φ3(x) = x2 + x+ 1 and ϕ4 = x2 + 1. To Calculate Φ6(x), we note that this is an irreducible factor of
x6 − 1 = (x3 − 1)(x3 + 1) = (x3 − 1)(x+ 1)(x2 − x+ 1), we we have Φ6(x) = x2 − x+ 1. Thus,

x12 − 1 = (x− 1)(x+ 1)(x2 + x+ 1)(x2 + 1)(x2 − x+ 1)Φ12(x) = (x8 − x6 − x2 − 1)Φ12(x).

Dividing x12 − 1 by x8 + x6 − x2 − 1 gives Φ12(x) = x4 − x2 + 1.

For (vi), since Φn(x) is irreducible over Q and each primitive nth root of unity is a root of Φn(x), by the
Crucial Proposition, for each primitive nth root of unity ϵi, there is a field isomorphism ψ : Q(ϵ) → Q(ϵi).
Since Q(ϵi) ⊆ Q(ϵ), and [Q(ϵ) : Q] = [Q(ϵi) : Q], Q(ϵi) = Q(ϵ), so ψ ∈ Gal(Q(ϵ)/Q). There ϕ(n) such
automorphisms, so these automorphisms give Gal(Q(ϵ)/Q). We define ϕ : Gal(Q(ϵ)/Q) → (Zn)

∗ as follows:
Let σ ∈ Gal(Q(ϵ)/Q), and assume σ(ϵ) = ϵi, with i < n and relatively prime to n. Define ϕ(σ) = i ∈ (Zn)

∗.
Suppose τ ∈ Gal(Q(ϵ)/Q) and τ(ϵ) = ϵj , so that ϕ(τ) = j in (Zn)

∗. Then, στ(ϵ) = ϵij , so ϕ(στ) = ij in
(Zn)

∗. Note ij as an integer might be greater than n, but it is relatively prime to n, so its image makes
sense in (Zn)

∗, since if ij = nq + r, with 0 ≤ r < n, ij = r in (Zn)
∗. On the other hand ϕ(σ)ϕ(τ) = ij

in (Zn)
∗, so ϕ is a group homomorphism. Suppose σ ∈ Gal(Q(ϵ)/Q) belongs to the kernel of ϕ. Then, if

σ(ϵ) = ei, i = 1 in (Zn)
∗. Since 1 ≤ i < n, this means i = 1, so σ = id in Gal(Q(ϵ)/Q). Thus, ϕ is 1-1. Since

|Gal(Q(ϵ)/Q)| = ϕ(n) = |(Zn)
∗|, ϕ is an isomorphism. □

Bonus Problems. Each bonus problem is worth 10 points. Bonus problems must be completely (or very
close to completely) correct in order to receive any extra points.

1. Let p be a prime and x, y indeterminates over Zp. Set F := Zp(x
p, yp) and K := Zp(x, y).

(i) Show that [K : F ] = p2.
(ii) Exhibit explicitly (with proof) infinitely many intermediate fields between F and K.
(iii) Find the Galois group of K over F .

Solution. Part (i) is similar to the case for p = 2 that we did in class. We first note that [F (x) : F ] = p.
Clearly xp ∈ F , so [F (x) : F ] ≤ p and x is a root of f(T ) = T p−xp ∈ F [T ]. OverK, f(T ) = (T−x)p, so f(T )
has just one root in its splitting field. If f(T ) is the minimal polynomial for x over F , then [F (x) : F ] = p.
Suppose not. Then if h(T ) ∈ F [T ] is the minimal polynomial for x over F , then h(T ) is irreducible over F
and has degree r < p. Thus, h′(T ) ̸= 0, so the GCD of h(T ) and h′(T ) is 1. Thus, h(T ) has distinct roots in
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its splitting field. This is a contradiction, since h(T ) divides f(T ). Thus, f(T ) is irreducible over F , which
gives what we want. Since K = F (x)(y), a similar arguments shows that g(T ) = T p − yp is irreducible over
F (x), so [K : F ] = [F (x, y) : F ] = p2, which is what we want.

For (ii), we first note that just as in the lecture of April 15, any f ∈ K satisfies fp ∈ F , so there cannot be
a primitive element for the field extension F ⊆ K. We claim the fields F (x+ xp

n

y) are distinct, for n ≥ 1.
Suppose E := F (x+xp

n

y) = F (x+xp
m

y), with n ̸= m. Then (x+xp
n

y)− (x+xp
m

y) = (xp
n −xp

m

)y ∈ E.
Since xp

n−xpm ∈ F , we have y ∈ E. Thus, xp
n

y ∈ E, and hence x ∈ E. It follows thatK = E = F (x+xp
n

y),
a contradiction. Thus, the fields F (x+ xp

n

y) are distinct, and hence there are infinitely many intermediate
fields between F and K.

For (iii), if σ belongs to the Galois group, then σ(x) must be a root of T p − xp, but this has only one root,
so we must have σ(x) = x. Similarly, σ(y) = y, so the only automorphism of K fixing F is the identity
automorphism. □

2. Let F ⊆ K be fields with K = F (α). Assume αn ∈ F and F contains a primitive nth root of unity. Prove
that if [K : F ] = d, then αd ∈ F and d | n. Then show that Gal(K/F ) is cyclic.

Solution. Let ϵ ∈ F be a primitive nth root of unity and suppose αn = a ∈ F . Let p(x) denote the minimal
polynomial of α over F . Then, p(x) divides xn − a, which equals (x − α)(x − ϵα) · · · (x − ϵn−1α). Thus,
p(x) = (x − ϵi1α) · · · (x − ϵidα), for some ij . The constant term of p(x) belongs to F on the one hand and
equals ϵi1+···+idαd on the other hand. Since ϵ ∈ F , αd ∈ F . It follows that d is the least positive integer
such that αd ∈ F . To see this, write n = qd + r, with 0 ≤ r < d. Then αn = (αd)q + αr. If r ̸= 0, then
αr ∈ F , a contradiction. Thus, r = 0 and d | n.
Suppose αd = b ∈ F . Then p(x) = xd − b. Write n = dc, so that γ := ϵc ∈ F is a primitive dth root of
unity, and the roots of p(x) are α, γα, γ2α, . . . , γd−1α ∈ K. This shows that K is the splitting field of p(x)
over F and the extension F ⊆ K is a Galois extension. Define σ : K → K by σ(α) = γα, which we can
do by the Crucial Proposition. Then, σ2(α) = σ(γα) = γσ(α) = γ2α. Continuing, σ3(α) = γ(σ2(α)) =
σ(γ2α) = γ2σ(α) = γ3α. Inductively, we have that σi(α) = γiα, for 1 ≤ i ≤ d− 1. This gives d− 1 distinct
non-identity elements in Gal(K/F ), so it follows that ⟨σ⟩ = Gal(K/F ), since |Gal(K/F )| = d = [K : F ]. □
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